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Open-end outflow boundary condition approximations required in the solution of 
gas flow problems by the Lax-Wendroff method are presented. An upwinding 
method is compared with that using characteristics at the boundary, and both 
methods are assessed by a comparison of their solutions with the theoretical solution 
of a test problem. The results show that the most accurate solutions may be obtained 
from a hybrid version of these two methods 
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In recent years the Lax-Wendroff method 1 has been 
used to compute unsteady one-dimensional gas flow 
in pipes. It has been shown by Warren 2 that the 
method has distinct advantages over unmodified 
characteristic methods as it can provide accurate 
answers to problems which involve shocks in addition 
to problems which involve characteristics only. The 
Lax-Wendroff method, however, cannot be used on 
the boundary of the problem and some other tech- 
nique is required to approximate the conditions there. 
In the previous paper 2 suitable boundary condition 
approximations were introduced for shock tubes with 
closed ends; here this approach is extended to deal 
with shock tubes with open ends. 

This paper considers an upwind boundary con- 
dition approximation in conservation form, which is 
appropriate for the solution of gas flow problems 
where shocks may be expected to occur. A test prob- 
lem, consisting of a shock tube with an open end, is 
presented so that the upwind and characteristic 
methods of approximating boundary conditions can 
be compared with each other and with theoretical 
solutions. 

G e n e r a l  t h e o r y  

The governing equations of one-dimensional gas flow 
must first be written in conservation form. For sim- 
plicity of notation it is convenient to introduce new 
dependent variables, the momentum, m, and the 
energy, e, per unit volume defined by: 

m = pu, e = p ( E  +~u 2) (1) 
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where E = p / p ( y -  1). The conservation form for the 
equations of continuity, momentum and energy for 
one-dimensional flow of an ideal gas, with heat 
transfer and wall-friction, is now: 

o v  oG(V)  
+ - -  B (9.) 

ot Ox 

with: 

[!] r m 1 V =  , G ( V ) =  p + m 2 / p  , 

L ( e + p ) m / p _ l  [o] 
B =  -pC  

Pq 

and the wall friction term defined by: 

4f u 
¢ - - ~ l u l  

The quasilinear form of these equations is: 

(3) 

° W + A ° W =  C 
Ot Ox 

(4) 

with: 

W =  , A =  u l p  , 

TP 

C =  L S+j 
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Two-step Lax-Wendrof f  method 

For a pipe subdivided by the mesh points xj =jh, 
j = 0  . . . . .  jr, as shown in Fig 1, the Lax-Wendroff 
approximation to Eq (2) gives: 

vn+I/2 1 1 At G" ,+,/2 =~(%n+,  +v~)-~h--;(j+,-cT.) 

+At B "  -~( j+, +B~.) 
(S) 

vn+l  A t  G.+I/2 ~.+1/2~ 

at  -t. i : /n+l /2  "~ + ~  (B~++1/22 i - - j - l ~ 2 ,  

By applying this approximation to the grid it 
v "+a f o r j = l ,  . , J - 1 .  The is possible to calculate - i  , .. 

calculation of V~ +1 and V~ +~ requires the considera- 
tion of the boundary conditions. 

Upwind approximation at the boundary 

The upwind method used at the boundary is very 
similar to that used for internal nodes, attributed to 
Lelevier by Richtmeyer and Morton 3. In the method 
the time derivatives are approximated by forward 
differences and the space derivatives by forward or 
backward differences according to whether u < 0 or 
u > 0. As in the problems under consideration there 
is no possibility of the reversal of gas flow, the 
equations are presented only for the case u > 0. Apply- 
ing the method to Eq (2) at node J gives: 

pn+l __pn m n _ n 
J 1+ 1 m l - x - O  (6) 

At Ax 

n 2 n m~ +x - m j + ( p + m 2 / p ) ~ - ( / 9  +m /P)]-i 
At Ax 

= - p ~ ¢ ~  (7) 
e~ +1-eI+" ((e+/9)m/p)~r--((e+/9)m/p)~-i 

At hx 

= P ~ q l  (8) 

The method has the special advantage that it 
can be used at pipe ends under outflow conditions, 
since the approximation is one-sided. Also, the 
method is conservative, which is essential for the 
approximation of unsteady gas flows with shocks. 

( n+ l )K  

nK 
E 

" 4  F-- 

Fig 1 
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( j + l ) h  
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I I 
I I 

(J-1)h Jh 

Computational grid for pipe of length x = Jh 

In the solution of a practical problem these 
upwind approximations are solved simultaneously 
with appropriate assumptions at the boundary of the 
problem. 

Characterist ic approximation at the boundary 

The characteristics and characteristic relations can be 
obtained from the quasilinear form. 4 

It has been shown from a consideration of the 
de Hailer reservoir discharge problem 2 that slightly 
more accurate answers may be obtained by writing 
the characteristic equations in terms of the u, a, a, 
variables used by Benson et al 5. 

The new variables may be obtained from the 
relations: 

[ /9~ 1/2 a 

a = ~ T p )  , a n - (  /9)(,_,)/z , 

a ~2T/(T-1) 

P = P r e f / - - /  , ( 9 )  \ a a /  

/gref (_.a_a) 2z'/('/-1) 
P = T--~T \ a . /  

The characteristic relations are now: 

_• y - 1  
da+ du=- - -~ -a  d t + a  daa (10) 

a a  

where 

o = , , _  1, 1, : /  

Notat ion 
a Speed of sound 
a, Speed of sound after isentropic change of state 

to reference pressure /gref 

D Pipe diameter 
E Internal energy 
f Friction factor 
19 Pressure 
q Heat transfer rate per unit mass 

t Time 
u Particle velocity 
x Distance 
T Ratio of specific heats (y = 1.4) 
p Density 

S u b s c r i p t / s u p e r s c r i p t  

U~. =-- U(jh, nk)=- U(x, t) 
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on the C (~), C (2) characteristics, d x / d t  = u + a, and: 

1 aa /3dt (11) d a ,  - 2 pa  2 

where: 

/3 = (3' - 1)p(q + u~b) 

on the C characteristic, d x / d t  = u. 
These characteristic equations may be approxi- 

mated by applying the method of Courant et  a l  6, or 
the Hartree method 7 if greater accuracy is required. 
The resulting equations can then be used to adapt the 
Lax-Wendroff method for various boundary condi- 
tions. 

Using the notation of Fig I the Courant method 
leads to: 

a n -  a p + ~  -~ (un -- Up) 

3'-- 1 aA 
= 2 aAk+(--~.)A[(a")a--(aa)P] (12) 

on the C (1) characteristic, RP, and: 

(a,)n_(aa)s=21_ (a~)A/3^k (13) 
p A a ~  

on the C characteristic, RS. 
In the solution of a problem these characteristic 

approximations are solved simultaneously with the 
appropriate quasi-steady state conditions at the boun- 
daries of the problem. In the computation the Courant 
method may be used on its own or with the Hartree 
method in typical predictor--corrector fashion. 

Shock tube problem 

The bursting of a diaphragm in a shock tube produces 
a complex wave pattern consisting of a shock, inter- 
face and rarefaction wave. For zero friction and heat 
transfer, it is possible to calculate an exact analytical 
solution for the incident wave before reflection 
occurs. The accuracy with which the Lax-Wendroff 
method can approximate this analytic solution has 
been examined by Sod 11. 

Once reflection from a tube end has occurred 
exact analytical solutions are not available in general. 
However, by choosing initial values which reduce 
the incident wave solely to a shock, it is possible to 
obtain an exact analytical solution for the ensuing 
reflected wave. For this special case, therefore, it is 
possible to compare numerical with theoretical 
solutions. 

This approach has already been used for a 
shock tube with a closed end 2, where it was shown 
that a conservative numerical approximation, 
obtained by incorporating reflection conditions, gave 
a more accurate solution than a characteristic approxi- 
mation at the boundary. For the open-end problem 
considered here a solution obtained from a conserva- 
tive approximation is compared with a solution 
obtained by using characteristics at the boundary. 

The flow behind a shock wave may be subsonic 
or supersonic. Current practice assumes that for sub- 
sonic flow a reflected rarefaction wave will be initi- 

Unsteady one-dimensional gas f low 

ated when the shock wave reaches the open end, but 
for supersonic flow the shock passes right through the 
open end and no reflected wave is possible s . 

The pressure ratio across a shock at which the 
flow behind the shock changes from subsonic to super- 
sonic flow may be calculated by graphical methods 9. 
Another possibility is to write the Rankine-Hugoniot 
equations in terms of a parameter z =(P2-Pl ) /P l .  
Following Whitham l° the relations across a shock 
may be written in the form: 

U 2 --  U 1 ;Z 

a ]  [ 3'+1 
(14) 

3,+1 
P2 1 + - - ~ -  z 

+ 1 ' - 1  z Pl 1 
(15) 

I !1 1/2 
a___~2 = (16) 
al 3'+1 

- - Z  1+ 23' 

where the subscripts 1 and 2 indicate conditions in 
front of and behind the shock respectively. The sonic 
condition, u2 = a~, in conjunction with Eqs (14) and 
(16), and ul = 0, leads to the quadratic: 

1 8 z 2 - 5 6 z - 4 9 = 0  

With 31= 1.4 this equation has a positive root z = 
3.823, giving the value at which the flow behind the 
shock becomes sonic. 

T h e o r e t i c a l  so lu t ion  

It is possible to obtain theoretical solutions to shock 
tube problems under the assumption of zero friction 
and zero heat transfer. For convenience the further 
assumptions at the boundary, required in obtaining 
these solutions, are restated here: 

Theoretical quasi-steady assumption 
(1) If the flow behind a shock wave is supersonic 

the boundary conditions are ignored. 
(2) If the flow behind the shock is subsonic then 

the calculation is initially performed with the assump- 
tion P = P e  at the boundary, where pe is the exit 
pressure at the open end. If this calculation gives 
subsonic flow at the boundary then the calculation is 
terminated. If supersonic flow values are obtained at 
the boundary then the problem is resolved with the 
sonic assumption, u ~ = a e ,  replacing the constant 
pressure assumption at the boundary. 

This theoretical quasi-steady assumption was 
used in obtaining solutions to the following examples 
where the shock tube was taken to have an open end 
at x=  1.0. 
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Example 1 : Shock wave with supersonic f low 
behind 

The  fol lowing initial values were  assumed: 

u = 4 . 0  # = 2 9 . 0  p = 7 . 0  for x < 0  

u = 0 . 0  p = l . 0  p = l . 4  f o r x > 0  

With these initial values the p rob lem has an 
exact solution: 

u = 4 . 0  p = 2 9 . 0  p = 7 . 0  for x / t < 5 . 0  

u = 0 . 0  p = l . 0  p = l . 4  f o r x / t > 5 . 0  

for all t satisfying 0 < t < 0.2. 
Since the shock wave  arrives at the open end 

at t = 0.2, the exact solution for t > 0.2 is: 

u = 4 . 0  p = 2 9 . 0  p = 7 . 0  

for all x satisfying 0 ~ x ~ 1. These  solutions are illus- 
trated in Fig 2 for various values of t ime. 

Shock Shock 
position position 

! t=O.O t=0.19 1 
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i i 
Shock tube 
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o o o Lox-Wendroff with characteristic or hybrid 
boundary approximation 

- -  Exact solution 

Example 2: Shock wave with subsonic f low 
behind, and a reflected subsonic rarefaction 
wave 

The  fo l lowing initial values were assumed: 

u = 0 . 2 9 8 8  p = l . 5  /9=1.867 f o r x < 0  

u = 0 . 0  p = l . 0  p = l . 4  f o r x > 0  

With these initial values the p rob lem has an 
exact solution: 

u = 0 . 2 9 8 8  p = 1 . 5  p = 1 . 8 6 7  f o r x / t < l . 1 9 5  

u = 0 . 0  p = l . 0  p = l . 4  f o r x / t > l . 1 9 5  

for t satisfying 0 < t < 0.8368. 
For  t > 0.8368 the solution consists of two con- 

stant state regions separated by  a rarefact ion fan. In  
this example  we have: 

u = 0 . 2 9 8 8  p = 1 . 5  

and: 

u = 0 . 6  p = 1 . 0  

/9 = 1.867 

for 0 ~  < x <~ 1 , 0 - 0 . 7 6 2 2 t '  

p = 1.397 

for 1 . 0 - 0 . 4 0 1 t ' ~  < x ~< 1.0 

> 
e 
_u 

0 n 

4 ~ ~  
3 
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Distance, x 

[ ]  [ ]  r- lLax-Wendr°ff  with characteristic 
boundary approximation 

o o o Lax-Wendroff with hybid boundary approximation 
- -  Exact solution 

b 

Fig  2 (a) Shock  wave  t = 0.0 and  t = 0.19 (b) Shock  wave  t = 0.21 
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where  the t ime,  t', is measured  from the m o m e n t  w h e n  
the shock  arrives at the open  end. The  region 1 . 0 -  
0 .7622t'  <~ x <~ 1 . 0 -  0.401 t' constitutes  the rarefaction 
w a v e  region. These  so lut ions  are illustrated in Fig  3 
for various values of  t ime. 

Example 3: Shock wave with subsonic flow 
behind, and a reflected sonic rarefaction wave 

The  f o l l o w i n g  initial values  were  assumed: 

u = 1 . 1 3 4  p = 4 . 0  / ) = 3 . 5  f o r x < 0  

u = 0 . 0  p = l . 0  p = l . 4  f o r x > 0  

With these initial  values  the problem has an 
exact solution: 

u = 1.134 p = 4 . 0  19=3.5 f o r x / t < l . 8 9  

u = 0 . 0  p = l . 0  p = l . 4  for x / t > l . 8 9  

for t satisfying 0 < t < 0.5292.  

Shock Shock 
position position J 
t = 0 t = 0.78 

, I 
I i 

Shock tube 

Unsteady one-dimensional gas flow 

For t > 0 .5292 the so lut ion  consists of  a steady 
state region and a rarefaction fan. In this example  w e  
have: 

u = 1.134 p = 4 . 0  p = 3 . 5  

for 0 ~  < x ~< 1 . 0 - 0 . 1 3 I t '  

and a rarefaction w a v e  in the region 1 . 0 -  0.131 t'<~ x <~ 
1.0, where  t' is measured from the m o m e n t  w h e n  the 
shock  arrives at the open  end. T h e  theoretical  values  
of  the f low at the open  end are now:  

u = 1.243 p = 3 .538 p = 3.206 

for this example.  These  so lut ions  are il lustrated in Fig  
4 for various values  of  time. 

Lax-Wendroff method with upwind boundary 
approximation 

For the numerical  so lut ion  of this problem subsonic  
boundary  condi t ions  are required at the open  end 
before  the arrival of  the shock  wave ,  and once  the 
shock  w a v e  has passed through the open  end the 
poss ibi l i ty  of  subsonic ,  sonic  or supersonic  f low must  
be considered.  

In the subsonic  case, the appropriate boundary  
c o n d i t i o n  is: 

pn+l j = Pe (17) 
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b 

Fig 3 (a) Shock wave  t = 0.0 and  t =  0.78 (b) Rarefact ion wave  t = 1.63 
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where p~ is the exit pressure at the open end. The 
values of p~+a and e~ +1 can be calculated from Eqs 

n + l  (6) and (8), and the value of uj may then be calcu- 
lated from: 

u~ + 1 = [ 2 ( e ~ +  1 p . + l \ / ]  | 1 p . + 1 ] ~ / 2  (~ ~--ii)// .i (18) 

For the case of supersonic flow no imposed 
conditions at the boundary are required. Here the 
values ,+1 ,+1 and e~ +1 p]  , m]  can be calculated from 
Eqs (6), (7) and (8), from which  may be obtained: 

.+1 . + l .  ,+1 (19) t t ]  = m ]  / p . /  

and: 

p~+' = (7 -1 ) (e~  +' -~u]'  " + '  m]"+") (20) 

1.5 

1.0 

O. 

n 

S h o c k  S h o c k  I position position I 
t = 0 t = 0 . 5 0  

I i 
Shock tube 

c F t=O t = 0 . 5 0  

1 I I I I I I I 
0 0.1 0.2 0 3  0.4 0 .5  0 6  0.7 0 .8  0.9 1 0  

For sonic flow, once again, Eqs (6) and (8) may 
be used to calculate p~+l and e7 ÷1 and the sonic 
assuLiption: 

n+ l  ( p~.+,  1/2 
u ,  = (21) 

in eonjunction with Eq (1) may now be used to give: 

n + l  ( ~ ( ~ - -  1)  e } + l ~  1/2 

uj \1 + r ( ~ -  1)/2 o - ~  ~ (9.2) 
J / 

n + l  Finally, the pressure, p]  , may be obtained from Eq 
(20). 

Lax-Wendroff method with characteristic 
boundary approximation 

For the solution with the characteristic approximation 
at the boundary a formulation of the boundary condi- 
tions in terms of the mixed variables u, a and aa was 
used. 

U 1.5 
o 

> 1.0 
Q) 
u 

0 5  

I I I I I I I t I I I 
0 0.1 0 2  0.3 0 .4  0 .5  0 .6  0.7 0 .8  0 9  1 0 

4 . 0  

0 . .3 ¸0  

,z 2 .0  

£3 
1 0  

I I I I 1 I I I I 1 I 
0 01 0.2 0.3 0 .4  0 .5  o .e  0 .7  0 .8  0.9 1 0  

4 .0  

(3. 
. 3.0  

~- 2 .0  
~b 

1.0 

1 I I I I I I I I l 1 
0 0.1 0 .2  0 .3  0 4  0 .5  0 .6  0 .7  0 .8  0.9 1.0 

4 . 0  

~ 3 . 0  

~ 2 o  
L 
o - 1 . 0  

~ o  

t = O  t = 0 . 5 0  

I 1 I I I 1 I t I I 1 
0 0.1 0.2 0 .3  0 .4  0 .5  0.6 0.7 0 .8  O.g 1.0 

Distance,  x 

o o o L o x - W e n d r o f f  w i t h  c h a r a c t e r i s t i c  o r  h y b r i d  
boundary approximat ion 

E x a c t  solution 

4 . 0  

3 . 0  

~ 2o 
L 
O.. 1.0 

I I I I I I I I I I 1 
0 0.1 0.2 0.3 0 4  0.5 0.6 0 7  0 8  0.9 1.0 

Distance, x 

0 o o Lax-Wendrof f  w i t h  c h a r a c t e r i s t i c  o r  h y b r i d  
boundary approximat ion 

- -  Exact solution 
b 

Fig 4 (a) Shock wave t = 0.0 and t = 0.5 (b) Rarefact ion wave t = 2 .06  
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Unsteady one-dimensional gas flow 

For subsonic flow the constant pressure condi- 
tion at the pipe exit takes the form: 

an =( P~I (~'-I,/~ 
(aa)s \~r~,, (23) 

where Pe is the exit pressure. The required values at 
the boundary aa, un and (aa)R can now be obtained 
from Eqs (12), (13) and (23). 

For supersonic flow, once again, no imposed 
boundary conditions are required. The three charac- 
teristic gradients are now all positive and the relations 
along the characteristics provide all the information 
that is necessary to compute the solution at the 
boundary. For the relation along the C (2) character- 
istic, Eq (10) with the Courant approximation gives: 

7 - 1  aR- aQ ~ (uR- uQ) 

72  1 a A = aAk +(--~)~ [(a~)R- (aa)Q] (24) 

The three Eqs (12), (13) and (24) can now be solved 
for the required unknowns uR, an and (aa)a. 

For sonic flow, the sonic assumption un = an 
in conjunction with Eq (12) gives: 

a n - 7 + l  ap+ up+ aAk 

+ (~a~A ((aa)R-- (a,)p) ] (25) 

where the entropy measure variable, (aa)R, can be 
calculated from Eq (13). With the sound speed, an, 
now known it is possible to calculate ps and pR from 
the isentropic relationships. 

Computational notes 

Solutions to the examples were calculated using the 
Lax-Wendroff method with the upwind and charac- 
teristic approximations at the boundary for various 
mesh lengths, Ax, with the time increment, At, 
obtained from max(lul+a)At/Ax=0.9 in order to 
satisfy the Courant-Friedrichs-Lewy stability 
criterion 3. 

The computations led to the following general 
observations: 
• Both the upwind and characteristic boundary 

approximation methods showed deficiencies when 
used on their own. 

• The upwind method provided slightly greater 
accuracy than the characteristic method for shocks 
with supersonic flow behind the shock. 

• The characteristic method provided greater 
accuracy than the upwind method in the calcula- 
tion of the rarefaction wave arising from a shock 
with subsonic flow behind the shock. 

The theoretical reason for these observations 
is, of course, that a characteristic method is not suit- 
able for flow calctilations in which large shocks occur. 
For shocks with subsonic flow behind the shock, these 
errors have much less significance and are outweighed 
by the accuracy with which the rarefaction wave may 
be calculated. The rarefaction wave can be calculated 
accurately because the method of Courant et al, with 
mixed variables, provides an exact solution for 
homentropic flows 2. Further, the upwind method is 
not suitable for the calculation of a rarefaction wave, 
because one of the conservation equations has to be 
abandoned in accommodating the required boundary 
condition. 

Computat ional quasi-steady assumption 

The theoretical quasi-steady assumption cannot be 
programmed directly on a computer, and the manner 
of its implementation is now discussed. 

The first problem is to distinguish supersonic 
from subsonic flow behind a shock. This was achieved 
by evaluating average flow values from the nodes 
adjacent to the open end. In the implementation this 
average was computed from values at the five points 
adjacent to the end node. 

In the case of supersonic flow adjacent to the 
open end there are now two possibilities. In the first 
case there may be subsonic flow at the open end, 
because the shock has not arrived, and in this case 
the subsonic flow equations are used at the open end. 
The other possibility is that there is supersonic flow 
at the open end, in which case the supersonic flow 
equations are used. 

In the case of subsonic flow adjacent to the 
open end there are two possibilities once again. Either 
there may be subsonic flow at the open end, in which 
case the subsonic equations are used, or there is super- 
sonic flow at the open end, in which case the sonic 
equations, limiting the flow, are used. 

This computational quasi-steady assumption 
was used in all of the numerical calculations and 
would appear to have a quite general applicability. 

Lax-Wendrof f  method with hybrid boundary 
approximation 

The most accurate solutions to the examples were 
obtained from a hybrid version of the previous two 
methods, incorporating their best features. This 
hybrid version may be summarised: 

(1) Values of the flow variables at the open end are 
calculated using the subsonic equations of the charac- 
teristic method. If the resultant flow is subsonic or 
sonic the calculation is terminated. 

(2) If the flow is supersonic at the open end the 
average values of the flow at the five nodes adjacent 
to the open end are calculated. 

(3) If in (2) a region of subsonic flow adjacent to 
the boundary is established then the sonic equations 
of the characteristic method are used to calculate the 
flow values at the open end. 

(4) If in (2) a region of supersonic flow adjacent to 
the boundary is established then the supersonic 
equations of the upwind method are used to calculate 
the flow values at the open end. 

In Figs 2, 3 and 4 the results of computations 
with this hybrid method at the boundary are com- 
pared with results obtained from using the charac- 
teristic method at the boundary. In both sets of calcu- 
lations a mesh length of Ax = 0.025 was used. 
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Conclusion 

This paper has proposed boundary  condi t ion approxi- 
mations that may be used in the solution of gas flow 
problems by the Lax-Wendroff  method. Their  appli- 
cation has been examined by considering the solution 
of a shock tube problem with an open end. Through  
the choice of suitable parameters it has been shown 
that this problem may be used as a benchmark  for the 
comparison of numerical  methods of solution. The 
test problem has been used to compare the accuracy 
of an upwind  approximation with that of a charac- 
teristic approximation at the boundary.  The results 
have shown that the upwind  method provides slightly 
greater accuracy for supersonic flow, and the charac- 
teristic method provides greater accuracy for subsonic 
flow, behind  a shock. The most accurate results have 
been obtained by using a hybr id  version of these two 
methods. 

In conclusion it would  appear that the Lax-  
Wendroff  method,  in conjunct ion with this hybr id  
method,  has the potential for solving many problems 
where shocks cross pipe boundaries. An example of 
practical interest arises in an autoclave system when 
a shock impinges on a plate at the end of a pipe, and 
this problem is currently under  investigation. 
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